Distress Characteristics in Embankment-Bridge Transition Section of the Qinghai-Tibet Railway in Permafrost Regions

Author:

He Peifeng,Niu Fujun,Huang Yunhui,Zhang Saize,Jiao Chenglong

Abstract

AbstractThe Qinghai-Tibet Railway has been operating safely for 16 years in the permafrost zone and the railroad subgrade is generally stable by adopting the cooling roadbed techniques. However, settlement caused by the degradation of subgrade permafrost in the embankment-bridge transition sections (EBTS) is one of the most representative and severe distresses. A field survey on 440 bridges (including 880 EBTSs) was carried out employing terrestrial laser scanning and ground-penetrating radar for comprehensively assessing all EBTSs in the permafrost zone. The results show that the types of distresses of EBTSs were differential settlement, upheaval mounds of the protection-cone slopes, subsidence of the protection-cone slopes, surface cracks of the protection cones and longitudinal and transverse dislocation of the wing walls. The occurrence rates of these distresses were 78.93, 3.47, 11.56, 3.36, 21.18 and 4.56%, respectively. The most serious problem was differential settlement, and the average differential settlement amount (ADSA) was 15.3 cm. Furthermore, the relationships between differential settlement and 11 influencing factors were examined. The results indicate that ADSA is greater on the northern side of a bridge than on the southern side and on the sunny slope than on the shady slope. It is also greater in the high-temperature permafrost region than in the low-temperature permafrost region and in the high-ice content area than in the low-ice content area. The EBTSs are more influenced by ice content than by ground temperature. The ADSA increases when the embankment height increases, the particle size of subgrade soil decreases and the surface vegetation cover decreases.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3