Compositions of enzyme preparations for targeted modification of multicomponent bran

Author:

Vitol I. S.1,Meleshkina E. P.1ORCID,Krikunova L. N.2ORCID

Affiliation:

1. All-Russian Scientific and Research Institute for Grain and Products of its Processing

2. All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry

Abstract

Microbial enzyme preparations (EPs) of the cellulolytic, proteolytic and phytase action, as well as their compositions, allow obtaining quite a wide spectrum of products of hydrolysis of proteins, non-starch polysaccharides and phytin by means of targeted biocatalysis upon action on grain bran. The use of EPs and multienzyme compositions (MECs) is inherently a modern tool for intensification of biochemical processes underlying one or another food technology. At the same time, EPs allow modifying products of processing plant raw materials, in particular cereal, leguminous and oil-bearing crops (deep processing) and obtain valuable feed and food ingredients. Two multienzyme compositions based on domestic and foreign EPs have been developed and scientifically substantiated. Optimal conditions have been determined for conducting enzymatic reactions when using wheat-lentil-flax bran as a substrate. High effectiveness of the developed MECs has been shown: the proportion of reducing substances (RS) in the hydrolysates under study increased compared to the mass fraction of the autolysates of wheat and three-component bran by 2.8 and 2.3 times (MEC‑1) and by 3.5 and 2.7 times (MEC‑2), respectively. The content of soluble protein increased by 4.7 and 3.0 times (MEC‑1) and by 6.4 and 4.2 times (MEC‑2). The proportion of soluble phosphorus increased on average by 3.0–3.5 times when using MEC‑1 and MEC‑2. It has been found by gel-electrophoresis that the fractions containing low-molecular-weight peptides and free amino acids (MW  < 1000 Da) in the hydrolysates obtained using MECs exceeded by 3–4 times the corresponding fraction in the hydrolysates obtained under the action of endogenous enzymes (autolysis). With that, according to the HPLC results, the concentration of amino acids that are most valuable in terms of nitrogenous nutrition of yeasts (aspartic acid, arginine) increased on average by 2.5–3.0 times, the concentration of valine by 5 times, histidine and isoleucine by 2.0–2.5 times in the experimental hydrolysates of three-component bran.

Publisher

The Gorbatov's All-Russian Meat Research Institute

Reference30 articles.

1. Rimareva, L. V., Serba, E. M., Sokolova, E. N., Borshcheva, Yu. A., Ignatova, N. I. (2017). Enzyme preparations and biocatalytic processes in the food industry. Problems of Nutrition, 86(5), 63–74. https://doi.org/10.24411/0042-8833-2017-00078 (In Russian)

2. Tolkacheva, A. A., Cherenkov, D. A., Korneeva, O. S., Ponomarev, P. G. (2017). Enzymes of industrial purpose — review of the market of enzyme preparations and prospects for its development. Proceedings of the Voronezh State University of Engineering Technologies, 79(4), 197–203. https://doi.org/10.20914/2310-1202-2017-4-197-203 (In Russian)

3. Bilal, M., Iqbal, H. M. N. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in the food sector — current status and future trends. Critical Reviews. Food Science and Nutrition, 60(12), 2052–2066. https://doi.org/10.1080/10408398.2019.1627284

4. Serba, E. M., Rimareva, L. V., Overchenko, M. B., Ignatova, N. I., Medrish, M. E., Pavlova, A. A. et al. (2021). Selecting multi-enzyme composition and preparation conditions for strong wort. Proceedings of Universities. Applied Chemistry and Biotechnology, 11(3), 384–392. https://doi.org/10.21285/2227-2925-2021-11-3-384-392 (In Russian)

5. Rimareva, L. V., Serba, E. M., Overchenko, M. B., Shelekhova, N. V., Ignatova, N. I., Pavlova, A. A. (2022). Enzyme complexes for activating yeast generation and ethanol fermentation. Foods and Raw Materials, 10(1), 127–136. https://doi.org/10.21603/2308-4057-2022-1-127-136

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3