Abstract
In this study, the instability and emission changes of hydrogen-enriched methane-propane fuel under external acoustic application in a premixed and vortex assisted system were investigated. In the experiment, 67% -33% and 63,5% -31,5% -5% were studied under different acoustic stresses as fuel mixtures. It is known that hydrogen can reduce the emission parameters polluting the environment and its effect on combustion stability. For this reason, interest in the use of hydrogen fuel with other fuels has increased. It may be possible to improve the combustive performance properties of compatible methane and propane mixtures by adding hydrogen. Also, the effects of acoustic applications were examined. Addition of hydrogen to the methane/propane flame increased the heating value of the mixture and caused flame instability due to the increase in laminar flame velocity. There was an increase of 12.2% in light intensity. When the amount of hydrogen increased, the flame was more resistant to acoustic stress. High dynamic pressure fluctuations occurred with 90 Hz acoustic forcing. The emission capacity of the mixture to which hydrogen is added by acoustic forcing has consistently higher values. This was attributed to the change in reaction kinetics due to the increased content.
Funder
Erciyes University Research Foundation
Publisher
Türkiye Enerji Stratejileri ve Politikalari Araştirma Merkezi (TESPAM)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献