Abstract
Hydrogen is largely considered as an attractive additive fuel for hydrocarbons and alcohol-fueled engines. Nevertheless, a complete understanding of the interactions between blended fuel mechanisms under oxidative conditions at low initial temperature is still lacking. This study is devoted to the numerical investigation of the laminar burning velocity of hydrogen–hydrocarbon and hydrogen–alcohol fuels under several compositions. Estimations were compared with experimental data reported in the current literature. Additionally, the effects of hydrogen addition on engine performance, NOX, and other pollutant emissions of the mentioned fuels have been thermodynamically analyzed. From the study, it has been observed that the laminar burning velocity of the fuel mixtures increased with increasing hydrogen fractions and the peak value shifted to richer conditions. Besides, hydrogen fraction was found to increase the adiabatic flame temperatures eventually favoring the NOX formation for all fuel blends except the acetylene–hydrogen–air mixture where hydrogen showed a reverse effect. Besides, hydrogen is also found to improve the engine performances and helps to surge thermal efficiency, improve the combustion rate, and lessen other pollutant emissions such as CO, CO2, and unburned hydrocarbons. The model predicted well and in good agreement with the experimental data reported in the recent literature.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献