Single cycle to failure in torsion of three standard and five locking plate constructs

Author:

Cabassu J. B.,Kowaleski M. P.,Shorinko J. K.,Blake C. A.,Gaudette G. R.,Boudrieau R. J.

Abstract

SummaryObjectives: The biomechanical properties of standard plates and recently designed locking plates were compared in torsion. We hypothesized that titanium (Ti) constructs would have the greatest deformation, and String of Pearls (SOP) constructs the greatest strength and stiffness.Methods: Dynamic compression plates (DCP), stainless steel (SS) limited contact (LC)-DCP, Ti LC-DCP, locking compression plate (LCP), 10 mm and 11 mm Advanced Locking Plate System (ALPS) 10 and 11, SOP and Fixin plates were applied to a validated bone model simulating a bridging osteosynthesis. Yield torque (strength), yield angle (deformation) and stiffness were compared using one-way ANOVA with post hoc Tukey (p <0.05).Results: The ALPS 11 constructs had significantly greater elastic deformation than all constructs except for the ALPS 10. There were not any differences in strength observed except for the ALPS 10 constructs, which was less than that for the SOP, LCP, DCP and ALPS 11 constructs. No differences in construct torsional stiffness were observed with the SS LCDCP, DCP, LCP and SOP constructs however all had greater stiffness than all remaining constructs. The ALPS 10 construct had lower stiffness than all constructs.Clinical significance: Modulus of elasticity of Ti explains the higher deformation and lower stiffness of these systems, with similar results for the Fixin due to its lower section modulus compared to all other plates. The SOP and standard constructs had surprisingly similar biomechanical properties in torsion. The rationale for selecting these implants for fracture repair likely needs to be based upon their differing biomechanical properties inherent to the diverse implant systems.Presented at the 38th Annual Conference of the Veterinary Orthopedic Society, Snowmass, Colorado, USA March 6, 2011.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3