The effect of intramedullary pin size and plate working length on plate strain in locking compression plate-rod constructs under axial load

Author:

Glyde Mark,Day Robert,Hosgood Giselle,Pearson Tim

Abstract

SummaryObjective: To investigate the effect of intramedullary pin size and plate working length on plate strain in locking compression plate-rod constructs.Methods: A synthetic bone model with a 40 mm fracture gap was used. Locking compression plates with monocortical locking screws were tested with no pin (LCP-Mono) and intramedullary pins of 20% (LCPR-20), 30% (LCPR-30) and 40% (LCPR-40) of intramedullary diameter. Two screws per fragment modelled a long (8-hole) and short (4-hole) plate working length. Strain responses to axial compression were recorded at six regions of the plate via three-dimensional digital image correlation.Results: The addition of a pin of any size provided a significant decrease in plate strain. For the long working length, LCPR-30 and LCPR-40 had significantly lower strain than the LCPR-20, and plate strain was significantly higher adjacent to the screw closest to the fracture site. For the short working length, there was no significant difference in strain across any LCPR constructs or at any region of the plate. Plate strain was significantly lower for the short working length compared to the long working length for the LCP-Mono and LCPR-20 constructs, but not for the LCPR-30 and LCPR-40 constructs.Clinical significance: The increase in plate strain encountered with a long working length can be overcome by the use of a pin of 30–40% intramedullary diameter. Where placement of a large diameter pin is not possible, screws should be placed as close to the fracture gap as possible to minimize plate strain and distribute it more evenly over the plate.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3