The effect of intramedullary pin size and monocortical screw configuration on locking compression plate-rod constructs in an in vitro fracture gap model

Author:

Glyde M.,Hosgood G.,Day R.,Pearson T.

Abstract

SummaryObjective: To investigate the effect of intramedullary pin size in combination with various monocortical screw configurations on locking compression plate-rod constructs.Methods: A synthetic bone model with a 40 mm fracture gap was used. Locking compression plates with monocortical locking screws were tested with no pin (LCP-Mono) and intramedullary pins of 20% (LCPR-20), 30% (LCPR-30) and 40% (LCPR-40) of intramedullary diameter. Locking compression plates with bicortical screws (LCP-Bi) were also tested. Screw configurations with two or three screws per fragment modelled long (8-hole), intermediate (6-hole), and short (4-hole) plate working lengths. Responses to axial compression, biplanar four-point bending and axial load-to-failure were recorded.Results: LCP-Bi were not significantly different from LCP-Mono control for any of the outcome variables. In bending, LCPR-20 were not significantly different from LCP-Bi and LCP-Mono. The LCPR-30 were stiffer than LCPR-20 and the controls. The LCPR-40 constructs were stiffer than all other constructs. The addition of an intramedullary pin of any size provided a significant increase in axial stiffness and load to failure. This effect was incremental with increasing intramedullary pin diameter. As plate working length decreased there was a significant increase in stiffness across all constructs.Clinical significance: A pin of any size increases resistance to axial loads whereas a pin of at least 30% intramedullary diameter is required to increase bending stiffness. Short plate working lengths provide maximum stiffness. However, the overwhelming effect of intramedullary pin size obviates the effect of changing working length on construct stiffness.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3