Effect of Plate Length on Construct Stiffness and Strain in a Synthetic Short-Fragment Fracture Gap Model Stabilized with a 3.5-mm Locking Compression Plate

Author:

Trefny Fabian N.1,Glyde Mark1ORCID,Hosgood Giselle1,Hayes Alex2,Day Robert2

Affiliation:

1. Division of Health Sciences, School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia

2. Department of Medical Engineering and Physics, Royal Perth Hospital, Perth, Australia

Abstract

Abstract Objective To evaluate the effect of 3.5-mm locking compression plate (LCP) length on construct stiffness and plate and bone model strain in a synthetic, short-fragment, fracture-gap model. Study Design Six replicates of 6-hole, 8-hole, 10-hole, and 12-hole LCP constructs on a short-fragment, tubular Delrin fracture gap model underwent four-point compression and tension bending. Construct stiffness and surface strain, calculated using three-dimensional digital image correlation, were compared across plate length and region of interest (ROI) on the construct. Results The 12-hole plates (80% plate–bone ratio) had significantly higher construct stiffness than 6-hole, 8-hole, and 10-hole plates and significantly lower plate strain than 6-hole plates at all ROIs. Strain on the bone model was significantly lower in constructs with 10-hole and 12-hole plates than 6-hole plates under both compression and tension bending. Conclusion Incremental increases in construct stiffness and incremental decreases in plate strain were only identified when comparing 6-hole, 8-hole, and 10-hole plates to 12-hole plates, and 6-hole to 12-hole plates, respectively. Strain on the bone model showed an incremental decrease when comparing 6-hole to 10-hole and 12-hole plates. A long plate offered biomechanical advantages of increased construct stiffness and reduced plate and bone model strain, over a short plate in this in vitro model.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3