Path tracking control of automated vehicles based on adaptive MPC in variable scenarios

Author:

Liu Xinyong1ORCID,Ou Jian1,Yan Dehai1,Zhang Yong1,Deng Guohong1

Affiliation:

1. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts Ministry of Education Chongqing University of Technology Chongqing China

Abstract

AbstractFor complex and dynamic high‐speed driving scenarios, an adaptive model predictive control (MPC) controller is designed to ensure effective path tracking for automated vehicles. Firstly, in order to prevent model mismatch in the MPC controller, a tire cornering stiffness estimation algorithm is designed and a soft constraint on slip angle is added to further enhance the controller's precision in tracking trajectories and the vehicle's driving stability. Secondly, the improved particle swarm optimization (IPSO) method with dynamic weights and penalty functions is suggested to address the issue of insufficient accuracy in solving quadratic programming. Additionally, the standard particle swarm optimization (PSO) algorithm is used to seek the most suitable time horizon parameters offline to obtain the best time horizon data set under different vehicle speeds and adhesion coefficients, and then it is optimized online by an adaptive network‐based fuzzy inference system (ANFIS) to enhance the model predictive controller's adaptability in different operating conditions. Finally, simulation experiments are conducted under three different operating conditions: docked roads, split roads, and variable vehicle speeds. The results indicate that the designed adaptive MPC controller can accurately and stably track the reference trajectory in various scenarios.

Publisher

Institution of Engineering and Technology (IET)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Vehicle Path Tracking and Stability Cooperative Control Strategy Based on Stable Domain;SAE International Journal of Vehicle Dynamics, Stability, and NVH;2024-08-14

2. A New Approach for Addressing Slip Ratio Optimization and Trajectory Tracking Challenges in Autonomous Tractor Operations;2024 32nd Signal Processing and Communications Applications Conference (SIU);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3