Controls On Deep-Water Sand Delivery Beyond the Shelf Edge: Accommodation, Sediment Supply, and Deltaic Process Regime

Author:

Paumard Victorien1,Bourget Julien1,Payenberg Tobi2,George Annette D.1,Ainsworth R. Bruce2,Lang Simon1,Posamentier Henry W.3

Affiliation:

1. Centre for Energy Geoscience, School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia

2. Chevron Australia Pty. Ltd., 250 St Georges Terrace, Perth WA 6000, Australia

3. The Woodlands, Texas, U.S.A.

Abstract

ABSTRACT Stratigraphic models typically predict accumulation of deep-water sands where coeval shelf-edge deltas are developed in reduced-accommodation and/or high-sediment-supply settings. On seismic data, these relationships are commonly investigated on a small number of clinothems, with a limited control on their lateral variability. Advanced full-volume seismic interpretation methods now offer the opportunity to identify high-order (i.e., 4th to 5th) seismic sequences (i.e., clinothems) and to evaluate the controls on shelf-to-basin sediment transfer mechanisms and deep-water sand accumulation at these high-frequency scales. This study focuses on the Lower Barrow Group (LBG), a shelf margin that prograded in the Northern Carnarvon Basin (North West Shelf, Australia) during the Early Cretaceous. Thanks to high-resolution 3D seismic data, 30 clinothems (average time span of ∼ 47,000 years) from the D. lobispinosum interval (142.3–140.9 Ma) are used to establish quantitative and statistical relationships between the shelf-margin architecture, paleoshoreline processes, and deep-water system types (i.e., quantitative 3D seismic stratigraphy). The results confirm that low values of rate of accommodation/rate of sediment supply (δA/δS) conditions on the shelf are associated with sediment bypass, whereas high δA/δS conditions are linked to increasing sediment storage on the shelf. However, coastal process regimes at the shelf edge play a more important role in the behavior of deep-water sand delivery. Fluvial-dominated coastlines are typically associated with steep slope gradients and more mature, longer run-out turbidite systems. In contrast, wave-dominated shorelines are linked to gentle slope gradients, with limited development of turbidite systems (except rare sheet sands and mass-transport deposits), where longshore drift currents contributed to shelf-margin accretion through the formation of extensive strandplains. In this context, reduced volumes of sand were transported offshore and mud belts were accumulated locally. This study highlights that variations from fluvial- to wave-dominated systems can result in significant lateral changes in shelf-margin architecture (i.e., slope gradient) and impact the coeval development of deep-water systems (i.e., architectural maturity). By integrating advanced tools in seismic interpretation, quantitative 3D seismic stratigraphy represents a novel approach in assessing at high resolution the controls on deep-water sand delivery, and potentially predicting the type and location of reservoirs in deep water based on the shelf-margin architecture and depositional process regime.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3