Multivariate examination of the sediment-deficient southeast Australian continental shelf

Author:

Nordsvan Adam R.1,McKenzie N. Ryan1,Colleps Cody L.2,Koch Alexander3,Khan Nicole S.1

Affiliation:

1. 1Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong

2. 2Institute of Geosciences, University of Potsdam, 14476 Potsdam-Golm, Germany

3. 3Trove Research, Harpenden AL5 4EE, UK

Abstract

Continental shelves are the most morphologically variable element within the source-to-sink system owing to the numerous processes that influence their formation. A recent multivariate analysis of a global compilation of modern continental shelf data showed that much of the variability is related to tectonic setting, the degree to which the shelf has been glaciated, and carbonate production. While these factors play first-order roles in determining the morphology of shelves, other controlling mechanisms such as siliciclastic sediment supply, wave and tidal energy, bedrock lithology, and sea-level fluctuations are not as well understood. Here, we report findings from a detailed investigation of the southeast Australian shelf that explored how sediment distribution, wave energy, and bedrock lithology influence shelf morphology. The high-resolution analysis suggests that the southeast Australian shelf has 11 distinct shelf types. No strong relationships exist between the shelf attributes or shelf type with their onshore catchments. However, a substantial section boundary correlates with a bedrock contact between the Sydney Basin in the south and the New England Orogen to the north. South of this boundary, we propose that the shelf morphology reflects transgression with low sediment supply, whereas to the north, the morphology reflects transgression with higher sediment input. Although several factors contributed to this difference in shelf morphology, we suggest that sediment distribution and retention due to the active wave climate during the most recent transgression likely played a vital role.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3