Assessing the lateral and vertical variability of shelf-margin depositional systems and associated forcing mechanisms: A forward modeling approach

Author:

Shepherd John W.1,Paumard Victorien1,Salles Tristan2,Lang Simon1,George Annette D.1

Affiliation:

1. 1Centre for Energy and Climate Geoscience, School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia

2. 2Geocoastal Research Group, School of Geosciences, University of Sydney, New South Wales 2006, Australia

Abstract

Understanding the primary drivers of lateral and vertical variability in the stratal architecture of shelf-margin settings is key to understanding how sediments are partitioned from the shelf to the slope and the basin floor in source-to-sink systems. In this study, we model the 4-D evolution of a shelf margin over a period of 18.5 m.y. using Badlands stratigraphic forward modeling software. The modeled system is analogous to the Hammerhead shelf margin developed in the Bight Basin (southern Australian margin) during the Late Cretaceous, with forcing parameters interpreted from “real world” 3-D seismic data. A series of seven models were designed and tested to investigate potential drivers of shelf-margin variability, which include shoreline process regime (i.e., fluvial, wave, or mixed coastal processes), uplift, rainfall, and source area extent. We find that shoreline processes, which in the context of this study include fluvial and wave processes, may significantly impact shelf-margin architecture although they are less likely to affect the long-term evolution of a shelf margin. The addition of either fluvial or wave processes increases along-strike lateral variability with mixed-process shorelines resulting in the most variability. We propose that these hydrodynamic processes affect sediment supply locally leading to “out-of-phase” supply influencing both shelf-margin architecture and the character of sequence stratigraphic surfaces laterally. Rainfall is also shown to have a much more immediate effect on shelf-margin architecture compared to changes in tectonics (uplift). The results of this study are particularly applicable to the Hammerhead shelf margin and may also be applied to other shelf margins where eustasy is not the primary control on shelf-margin architecture and/or paleoclimatic conditions are poorly constrained.

Publisher

Geological Society of America

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3