Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence

Author:

Su Qiang1,Liu HongQuan1,Chen Ruxue1,Song Ying2,Ma Lan3,Gu YiJie1,Cui HongZhi1,Wang Hongchao4

Affiliation:

1. aCollege of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, P.R. China

2. bSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P.R. China

3. cOxford Instruments Technology (Shanghai) Co., Ltd, P.R. China

4. dSchool of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, P.R. China

Abstract

AbstractIn recent years, topological crystalline insulators have attracted increased attention due to practical demands of tunable electronic, spin electronic and thermoelectric devices. As an important topological crystalline insulator, mono-crystalline SnTe octahedra with {111} dominated surfaces, were successfully synthesized on a large scale via a surfactant-free hydrothermal synthesis route in this work. Important controlling factors for phase and morphology, i.e. reaction temperature, reactant concentration and stoichiometric ratio, are discussed in detail. The results indicated that high temperature is favorable for forming pure phase, and excessive Sn suppresses the appearance of SnTe with octahedral morphology. Lower reactant concentration is beneficial to preparing uniform SnTe octahedra via the selective growth mechanism. Crystallographic characteristics of the SnTe octahedra were investigated using focused ion beam, electron backscattered diffraction and transmission electron microscopy analysis. The hexagonal-like micro-plate (cut from an octahedron) was confirmed as mono-crystalline by the corresponding three Euler angle maps, the Kikuchi diffraction pattern and selected-area diffraction. It can be further deduced from the multiple experimental results that surfaces of octahedral SnTe are dominated by {111} crystallographic planes and the average size is 1–3 μm. Controllable mono-crystalline octahedra would effectively promote the development of topological crystalline insulators and their micro devices.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3