Investigation of Thermal and Dielectric Properties of Epoxy Based Hybrid Composites for Microelectronics Applications

Author:

Agrawal A.1,Satapathy A.2

Affiliation:

1. 1Department of Mechanical Engineering, Sagar Institute of Research and Technology-Excellence, Bhopal, India

2. 2Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, India

Abstract

AbstractThis study aims at exploring composite materials based on polymer matrix for microelectronics application. Materials used for such applications need to have added multifunctional properties. Up to now, a sole polymer or single filler-filled polymer composites is tough to satisfy the demand for more multifunctional properties, particularly to acquire high effective thermal conductivity and low-dielectric constant simultaneously. In this study, hybrid filler systems i.e. aluminum nitride of average particle size 60 to 70 micron and solid glass microspheres of 90 to 100 micron were incorporated into epoxy matrix in an attempt to reach a composite with such desired properties. By varying the volume fraction of fillers (5 to 25 % for aluminum nitride and 5 to 10 % for solid glass microspheres), a new kind of epoxy-matrix composite is fabricated on a laboratory scale by simple hand lay-up technique keeping in mind the fact that the future electronic packaging materials would possess high heat dissipation capability, high glass transition temperature, low coefficient of thermal expansion and low dielectric constant for appropriate functioning of the electronic substrate. In addition, the measured thermal conductivity is compared with calculated values obtained from the proposed mathematical model and found that they are in better agreement with the values obtained from the proposed correlation.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3