Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp

Author:

Gea S.1,Torres F. G.2,Troncoso O. P.2,Reynolds C. T.1,Vilasecca F.3,Iguchi M.4,Peijs T.1

Affiliation:

1. Department of Materials, Queen Mary, University of London, London, UK

2. Department of Mechanical Engineering, Catholic University of Peru, Lima, Peru

3. Department de Física EPS Edifici, Grup de Recerca en Materials, Departament P II, Girona, Spain

4. Research Institute for Polymers and Textiles, Tsukuba, Ibaraki, Japan

Abstract

Abstract Bacterial cellulose (BC) pellicles obtained from an Acetobacter xylinum culture were disintegrated using mechanical methods to be used as reinforcement to produce biocomposite sheets with Apple and Radish Pulp. The nanosize disintegrated BC pellicles were blended with microsize apple and radish pulp in the wet state and then hot pressed to produce paper-like sheets. Thermal analysis was carried out by Thermogravimetry Analysis (TGA). Mechanical properties were assessed by Quasistatic Tensile Tests and Dynamic Mechanical Analysis (DMA). High tensile moduli were obtained (up to 8 GPa) and a nearly linear dependence of Young's modulus on the BC volume fraction was observed. Morphological characterisation of biocomposite sheets and fracture surfaces performed by Scanning Electron Microscopy (SEM) revealed the structure of the disintegrated cellulose network and the failure mechanisms of the biocomposites.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3