Effects of induction hardened surface depth on the dynamic behavior of rotating shaft systems

Author:

Kabasakaloglu Ufuk1,Saruhan Hamit1

Affiliation:

1. 1Düzce, Turkey

Abstract

AbstractRotating shaft systems play many critical roles in rotating machinery. The performance of any rotating machinery is very dependent on vibrations generated by the rotating shaft. The selection of rotating shaft material is very important to meeting the enormous demand of industrial users on the capability of vibration resistance in rotating machinery. Recent requirements for using rotating shafts have heightened the need for the materials used. The heat treatment of material has received much attention over the last few decades. The research to date has tended to focus on material properties for resistance and strength rather than on dynamic behavior. The main objective of the present study is to experimentally investigate the role of induction surface hardening which is one of the most commonly used types of heat treatment on AISI 1045 steel dynamic behavior. Heat treatable AISI 1045 steel is among the most widely used in all industrial applications requiring more resistance and strength. It has received much attention over the past several decades due to its usage in rotating shafts, axles, crankshafts, and spindles. Induction surface hardening is used to sustain service life by increasing the surface hardness and vibration reliability of a material. Since induction hardened surface depth plays a very important part in the stability of the rotating shaft, three different hardened surface depths (0.5, 1.0, and 1.5 mm) are utilized. The results show that a hardened surface depth of 1.0 mm surprisingly and positively affects the dynamic behavior of the rotating shaft as compared to the hardened surface depths of 0.5 and 1.5 mm.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3