Abstract
Abstract. The European Union's Federal Climate Protection Act mandates a 55 % reduction in greenhouse gas emissions from 1990 levels by 2030, aiming for climate neutrality by 2050. Achieving these goals requires emission cuts across sectors, including energy, industry, and transportation. Lightweight design in transportation, achieved through alternative materials, geometry optimization, or enhanced fatigue strength, is vital. Highly stressed components like shafts are prone to failure due to notch locations which reduces the fatigue strength significantly. Inducing compressive residual stresses through methods like deep rolling and shot peening may improve the fatigue strength by reducing critical tensile load stresses. This study compares the fatigue strength of shaft cross bores treated with induction hardening, deep rolling, shot peening, and the combination of induction hardening and deep rolling. The research aims to establish a cause-effect relationship between surface layer properties and fatigue strength, considering the redistribution of residual stresses during testing.
Publisher
Materials Research Forum LLC