Prediction of machinability of AA7075 using artificial neural networks

Author:

Kaya Hasan1,Ekinci Önder1

Affiliation:

1. Kocaeli , Turkey

Abstract

Abstract In this study, machinability behavior of AA7075 aged at different time lengths was examined experimentally and by using artificial neural network prediction model. The hardness values were measured after the heat treatment processes. Homogenized reference samples and aged samples were machined by turning processes. On the one hand, the wear occurring on the cutting edge during machining, and the cutting forces depending on cutting speed and surface roughness were investigated. Surface roughness values for each reference material and aged sample were measured using processing parameters. Acquired surface roughness values formed a surface roughness prediction model by using artificial neural networks. The results showed that the surface roughness of the samples decreases while the cutting speed of the lathe increases. In the prediction model formed by using surface roughness acquired after the machinability tests, cutting force, cutting speed and aging process were used as input parameters. Surface roughness as a result of machinability tests were used as output parameters of the proposed prediction model. High coefficient of determination, R2 rate, obtained in the formed prediction model showed that the model is successful in the prediction of surface roughness.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference28 articles.

1. Fatigue behaviour and mechanical properties of Ecap'ed and thixoformed AA7075;High Temperature Materials and Processes,2014

2. A. Çalışkan;Mechanika,2014

3. Fatigue of 7075-T651 aluminum alloy;International Journal of Fatigue,2008

4. The effect of aging on the machinability of AA7075 aluminium alloy;Scientific Research and Essays,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3