Fatigue Behaviour and Mechanical Properties of ECAP'ed and Thixoformed AA7075

Author:

Kaya Hasan1,Uçar Mehmet2

Affiliation:

1. 1Department of Machine and Metal Technology, Vocational School of Asim Kocabiyik, Kocaeli University, Kocaeli 41800, Turkey

2. 2Department of Automotive Engineering, Technology Faculty, Kocaeli University, Kocaeli 41380, Turkey

Abstract

AbstractIn this study, the effects of thixoforming, both equal channel angular pressing (ECAP) and thixoforming on high cycle fatigue and fatigue surface morphology of AA7075 have been examined. Experiments are carried out with the same sample materials (AA7075) at a constant temperature (483 K) and the ``C'' route for 4 passes at ECAP process. In the process of thixoforming is 20 min at 888 K for waiting and 1 min at 673 K for pressing implemented. 140 MPa, 120 MPa and 100 MPa strength values were used at fatigue tests. The microstructural characterizations of the samples were carried out by using optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). This study is an attempt in detail to transformation fine and spherical grain structure with thixoforming process of minimized grain structure by ECAP. As a result of this study, it was seen that ECAP (1 pass) + semi-solid processing (SSP) applied samples have the highest hardness value (171 HV). When the values that are obtained after fatigue strength analyzed, SSP applied materials' property gave the best results and ECAP (1 pass) + SSP applied samples' results were second. When the both process applied materials' optimum values are investigated, it was observed that ECAP 1 pass + SSP applied material is more appropriate in terms of high hardness and fatigue life.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3