Wear behaviour of aluminium-based hybrid composites processed by equal channel angular pressing

Author:

Sharath BN1,Madhu P1,Verma Akarsh23ORCID

Affiliation:

1. Department of Mechanical Engineering, Malnad College of Engineering, Hassan, Karnataka, India

2. Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, India

3. Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan

Abstract

In the present investigation, a systematic experimental wear study at room temperature on Al2618 and reinforced Al2618 in the solutionized state, and after each pass of equal channel angular pressing (ECAP) was taken up to obtain a fundamental understanding of the wear behaviour and generate reference data on wear properties. The authors prepared a hybrid composite using Al2618 with boron carbide (5 wt.%) and graphite (5 wt.%) by the stir casting process. Solution treated cylindrical specimens of Al2618 and reinforced Al2618 were subjected to four passes of ECAP through a 120° die at room temperature using the processing route (BC). From the results point of view, microhardness measurements were carried out at room temperature on the specimens from the solutionized work piece before and after each pass of ECAP. Scanning electron microscope and X-ray diffraction techniques were used to conduct the microstructural studies. After three passes through both routes, the microstructure showed elongated grains with many dislocations; and after four passes, the microstructure depicted nearly equiaxed grains. Sub micrometre sized grains were produced after three passes of ECAP. Moreover, there was a monotonic increase in the hardness values with an increase in the number of passes. Finally, we reported that there was an improvement in the wear resistance of Al2618 and reinforced Al2618 subjected to ECAP process. This scrutiny may accelerate the applications of aluminium alloys in the industrial sector.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3