Uncertainty analysis of milling parameters using Monte Carlo simulation, the Taguchi optimization method and data-driven modeling

Author:

Kahraman Mehmet Fatih1,Bilge Habibullah1,Öztürk Sabri2

Affiliation:

1. Sakarya

2. Bolu , Turkey

Abstract

Abstract Surface roughness plays an important role in the performance of finished structures. The surface quality obtained is enormously affected by cutting parameters. Therefore, the purpose of the present study is to examine the surface roughness value of aluminum 7075 workpiece material during milling operation by considering three steps: (1) the multi-nonlinear regression (MNLR) modeling basis of Taguchi design, (2) optimization based on signal to noise ratio (S/N), and (3) probabilistic uncertainty analysis depending on Monte Carlo technique as a result of depth of cut, cutting speed and feed rate. The depth of cut of 0.2 mm, cutting speed of 900 m × min−1, and feed rate of 0.1 mm × tooth−1 were determined as Taguchi-optimized conditions with a surface roughness of 0.964 μm. In order to justify the surface roughness predicted under optimized conditions in relation to the predicted Taguchi method, three repetitive verification experiments were performed and surface roughness of 0.964 μm ± 0.3 % was achieved. The best-fit MNLR method with an R2 pred (predicted regression coefficient) of 98.02 % is useful for calculating the success of estimating the outcome variable. Monte Carlo simulations were found to be quite effective for identifying the uncertainties in surface roughness that could not be captured by means of deterministic methods.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3