Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells

Author:

Yamamoto Kimiko1,Furuya Kishio2,Nakamura Makiko3,Kobatake Eiry3,Sokabe Masahiro4,Ando Joji5

Affiliation:

1. Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan

2. FIRST Research Center for Innovative Nanobiodevice, Nagoya University, Nagoya 466-8550, Japan

3. Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan

4. Department of Physiology, Nagoya University School of Medicine, Nagoya 466-8550, Japan

5. Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, 880 Kita-kobayashi, Mibu, Tochigi 321-0293, Japan

Abstract

Endothelial cells (ECs) release ATP in response to shear stress, a fluid mechanical force generated by flowing blood but, although its release has a crucial role in controlling a variety of vascular functions by activating purinergic receptors, the mechanism of ATP release has never been established. To analyze the dynamics of ATP release, we developed a novel chemiluminescence imaging method by using cell-surface-attached firefly luciferase and a CCD camera. Upon stimulation of shear stress, cultured human pulmonary artery ECs simultaneously released ATP in two different manners, a highly concentrated, localized manner and a less concentrated, diffuse manner. The localized ATP release occurred at caveolin-1-rich regions of the cell membrane, and was blocked by caveolin-1 knockdown with siRNA and the depletion of plasma membrane cholesterol with methyl-β-cyclodexrin, indicating involvement of caveolae in localized ATP release. Ca2+ imaging with Fluo-4 combined with ATP imaging revealed that shear stress evoked an increase in intracellular Ca2+ concentration and the subsequent Ca2+ wave that originated from the same sites as the localized ATP release. These findings suggest that localized ATP release at caveolae triggers shear-stress-dependent Ca2+ signaling in ECs.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3