The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch)salmon stocks

Author:

Lee C. G.1,Farrell A. P.1,Lotto A.2,MacNutt M. J.3,Hinch S. G.2,Healey M. C.4

Affiliation:

1. Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6,Canada

2. Department of Forest Sciences, University of British Columbia, Vancouver,BC, V6T 1Z4, Canada

3. Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

4. Institute for Resources and Environment, University of British Columbia,Vancouver, BC, V6T 1Z4, Canada

Abstract

SUMMARYOur knowledge of the swimming capabilities and metabolic rates of adult salmon, and particularly the influence of temperature on them, is extremely limited, and yet this information is critical to understanding the remarkable upstream migrations that these fish can make. To remedy this situation, we examined the effects of temperature on swimming performance and metabolic rates of 107 adult fish taken from three stocks of sockeye salmon Oncorhynchus nerka and one stock of coho salmon O. kisutchat various field and laboratory locations, using large, portable, swim tunnels. The salmon stocks were selected because of differences in their ambient water temperature (ranging from 5°C to 20°C) and the total distance of their in-river migrations (ranging from ∼100 km for coastal stocks to ∼1100 km for interior stocks). As anticipated, differences in routine metabolic rate observed among salmon stocks were largely explained by an exponential dependence on ambient water temperature. However, the relationship between water temperature and maximum oxygen consumption(ṀO2max), i.e. the ṀO2 measured at the critical swimming speed (Ucrit), revealed temperature optima for ṀO2max that were stock-specific. These temperature optima were very similar to the average ambient water temperatures for the natal stream of a given stock. Furthermore,at a comparable water temperature, the salmon stocks that experienced a long and energetically costly in-river migration were characterized by a higher ṀO2max, a higher scope for activity, a higher Ucrit and, in some cases, a higher cost of transport, relative to the coastal salmon stocks that experience a short in-river migration. We conclude that high-caliber respirometry can be performed in a field setting and that stock-specific differences in swimming performance of adult salmon may be important for understanding upstream migration energetics and abilities.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3