Epithelial ultrastructure and cellular mechanisms of acid and base transport in theDrosophilamidgut

Author:

Shanbhag Shubha1,Tripathi Subrata1

Affiliation:

1. Tata Institute of Fundamental Research, Colaba, Mumbai 400 005,India

Abstract

SUMMARYThere is a resurgence of interest in the Drosophila midgut on account of its potential value in understanding the structure, development and function of digestive organs and related epithelia. The recent identification of regenerative or stem cells in the adult gut of Drosophila has opened up new avenues for understanding development and turnover of cells in insect and mammalian gastrointestinal tracts. Conversely, the physiology of the Drosophila gut is less well understood as it is a difficult epithelial preparation to study under controlled conditions. Recent progress in microperfusion of individual segments of the Drosophila midgut, in both larval and adult forms, has enabled ultrastructural and electrophysiological study and preliminary characterization of cellular transport processes in the epithelium. As larvae are more active feeders, the transport rates are higher than in adults. The larval midgut has at least three segments: an anterior neutral zone, a short and narrow acid-secreting middle segment and a long and wider posterior segment (which is the best studied) that secretes base (probably HCO3–) into the lumen. The posterior midgut has a lumen-negative transepithelial potential(35–45 mV) and a high resistance (800–1400 Ω.cm2)that correlates with little or no lateral intercellular volume. The primary transport system driving base secretion into the lumen appears to be a bafilomycin-A1-sensitive, electrogenic H+ V-ATPase located on the basal membrane, which extrudes acid into the haemolymph, as inferred from the extracellular pH gradients detected adjacent to the basal membrane. The adult midgut is also segmented (as inferred from longitudinal gradients of pH dye-indicators in the lumen) into anterior, middle and posterior regions. The anterior segment is probably absorptive. The middle midgut secretes acid (pH<4.0), a process dependent on a carbonic-anhydrase-catalysed H+ pool. Cells of the middle segment are alternately absorptive (apically amplified by ≈9-fold, basally amplified by >90-fold) and secretory (apically amplified by >90-fold and basally by ≈10-fold). Posterior segment cells have an extensively dilated basal extracellular labyrinth, with a volume larger than that of anterior segment cells, indicating more fluid reabsorption in the posterior segment. The luminal pH of anterior and posterior adult midgut is 7–9. These findings in the larval and adult midgut open up the possibility of determining the role of plasma membrane transporters and channels involved in driving not only H+ fluxes but also secondary fluxes of other solutes and water in Drosophila.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3