Diffuse Associations Between Drosophila suzukii and Filamentous Fungal Microbes May Alter Caneberry Disease Dynamics

Author:

Lewis Margaret T.1ORCID,Miller Logan1,Hu Mengjun2ORCID,Hamby Kelly A.1

Affiliation:

1. Department of Entomology, University of Maryland, College Park, MD 20742

2. Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742

Abstract

Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.

Funder

Northeastern Sustainable Agriculture and Research Institute Graduate Student Grant

Maryland Agricultural Experimental Station Research Grant Program

University of Maryland Graduate School Ann G. Wylie Dissertation Writing Fellowship

Publisher

Scientific Societies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3