In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes

Author:

Boudko D.Y.1,Moroz L.L.1,Linser P.J.1,Trimarchi J.R.1,Smith P.J.1,Harvey W.R.1

Affiliation:

1. The Whitney Laboratory, University of Florida, St Augustine, FL 32086, USA. boudko@whitney.ufl.edu

Abstract

The alkaline environment, pH approximately 11, in the anterior midgut lumen of mosquito larvae is essential for normal nutrition and development. The mechanism of alkalization is, however, unknown. Although evidence from immunohistochemistry, electron microscopy and electrophysiology suggests that a V-ATPase is present in the basal membranes of the epithelial cells, its physiological role in the alkalization process has not been demonstrated. To investigate a possible role of the V-ATPase in lumen alkalization, pH gradients emanating from the hemolymph side of the midgut in semi-intact mosquito larvae were measured using non-invasive, self-referencing, ion-selective microelectrodes (SERIS). Large H+ concentration gradients, with highest concentrations close to the basal membrane (outward [H+] gradients), were found in the anterior midgut, whereas much smaller gradients, with concentrations lowest close to this membrane (inward [H+] gradients), were found in the gastric caeca and posterior midgut. Similar region-specific pH gradients, with consistent anterior-to-posterior profiles, were observed in individuals of two Aedes species, Aedes aegypti from semi-tropical Florida and Aedes canadensis from north-temperate Massachusetts. The gradients remained in a steady state for up to 6 h, the maximum duration of the recordings. Bafilomycin A1 (10(−5), 10(−7)mol × l(−1)) on the hemolymph side greatly diminished the [H+] gradients in the anterior midgut but had no effect on the gradients in the gastric caecum and posterior midgut. These physiological data are consistent with the previous findings noted above. Together, they support the hypothesis that a basal, electrogenic H+ V-ATPase energizes luminal alkalization in the anterior midgut of larval mosquitoes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3