Affiliation:
1. Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
Abstract
MOR1, the Arabidopsis thaliana homologue of the Xenopus microtubule-associated protein MAP215, is required for spatial organization of the acentrosomal microtubule arrays of plant cells. To determine how loss of MOR1 function affects microtubule dynamics, we compared various parameters of microtubule dynamics in the temperature-sensitive mor1-1 mutant at its permissive and restrictive temperatures, 21°C and 31°C, respectively. Dynamic events were tracked in live cells expressing either GFP-tagged β-tubulin or the plus end tracking EB1. Microtubule growth and shrinkage velocities were both dramatically reduced in mor1-1 at 31°C and the incidence and duration of pause events increased. Interestingly, the association of EB1 with microtubule plus ends was reduced in mor1-1 whereas side wall binding increased, suggesting that MOR1 influences the association of EB1 with microtubules either by modulating microtubule plus end structure or by interacting with EB1. Although mor1-1 microtubules grew and shrank more slowly than wild-type microtubules at 21°C, the incidence of pause was not altered, suggesting that pause events, which occur more frequently at 31°C, have a major detrimental role in the spatial organization of cortical microtubules. Extensive increases in microtubule dynamics in wild-type cells when shifted from 21°C to 31°C underline the importance of careful temperature control in live cell imaging.
Publisher
The Company of Biologists
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献