A divergent tumor overexpressed gene domain and oligomerization contribute to SPIRAL2 function in stabilizing microtubule minus ends

Author:

Fan Yuanwei1ORCID,Bilkey Natasha1ORCID,Bolhuis Derek L2ORCID,Slep Kevin C3ORCID,Dixit Ram1ORCID

Affiliation:

1. Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis , St. Louis, MO 63130 , USA

2. Program in Molecular and Cellular Biophysics, University of North Carolina , Chapel Hill, NC 27514 , USA

3. Department of Biology, University of North Carolina , Chapel Hill, NC 27599 , USA

Abstract

Abstract The acentrosomal cortical microtubules (MTs) of higher plants dynamically assemble into specific array patterns that determine the axis of cell expansion. Recently, the Arabidopsis (Arabidopsis thaliana) SPIRAL2 (SPR2) protein was shown to regulate cortical MT length and light-induced array reorientation by stabilizing MT minus ends. SPR2 autonomously localizes to both the MT lattice and MT minus ends, where it decreases the minus end depolymerization rate. However, the structural determinants that contribute to the ability of SPR2 to target and stabilize MT minus ends remain unknown. Here, we present the crystal structure of the SPR2 N-terminal domain, which reveals a unique tumor overexpressed gene (TOG) domain architecture with 7 HEAT repeats. We demonstrate that a coiled-coil domain mediates the multimerization of SPR2, which provides avidity for MT binding, and is essential to bind soluble tubulin. In addition, we found that an SPR2 construct spanning the TOG domain, basic region, and coiled-coil domain targets and stabilizes MT minus ends similar to full-length SPR2 in plants. These results reveal how a TOG domain, which is typically found in microtubule plus-end regulators, has been appropriated in plants to regulate MT minus ends.

Funder

National Institute of General Medical Sciences

National Institutes of Health

University of North Carolina Ralph W. Mosley Fund

William H. Danforth fellowship

Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3