Feeling the heat: source–sink mismatch as a mechanism underlying the failure of thermal tolerance

Author:

Vornanen Matti1ORCID

Affiliation:

1. Department of Environmental and Biological Sciences , University of Eastern Finland, 80101 Joensuu, Finland

Abstract

ABSTRACT A mechanistic explanation for the tolerance limits of animals at high temperatures is still missing, but one potential target for thermal failure is the electrical signaling off cells and tissues. With this in mind, here I review the effects of high temperature on the electrical excitability of heart, muscle and nerves, and refine a hypothesis regarding high temperature-induced failure of electrical excitation and signal transfer [the temperature-dependent deterioration of electrical excitability (TDEE) hypothesis]. A central tenet of the hypothesis is temperature-dependent mismatch between the depolarizing ion current (i.e. source) of the signaling cell and the repolarizing ion current (i.e. sink) of the receiving cell, which prevents the generation of action potentials (APs) in the latter. A source–sink mismatch can develop in heart, muscles and nerves at high temperatures owing to opposite effects of temperature on source and sink currents. AP propagation is more likely to fail at the sites of structural discontinuities, including electrically coupled cells, synapses and branching points of nerves and muscle, which impose an increased demand of inward current. At these sites, temperature-induced source–sink mismatch can reduce AP frequency, resulting in low-pass filtering or a complete block of signal transmission. In principle, this hypothesis can explain a number of heat-induced effects, including reduced heart rate, reduced synaptic transmission between neurons and reduced impulse transfer from neurons to muscles. The hypothesis is equally valid for ectothermic and endothermic animals, and for both aquatic and terrestrial species. Importantly, the hypothesis is strictly mechanistic and lends itself to experimental falsification.

Funder

Academy of Finland

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3