Physiological Mechanisms of Acute Upper Thermal Tolerance in Fish

Author:

Ern Rasmus1ORCID,Andreassen Anna H.1,Jutfelt Fredrik12ORCID

Affiliation:

1. Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway

2. Department of Biological and Environmental Sciences, Faculty of Science, University of Gothenburg, Gothenburg, Sweden

Abstract

This review is focused on the questions of why fish exhibit heat failure at thermal extremes and which physiological mechanisms determine the acute upper thermal tolerance. We propose that rapid direct thermal impacts on fish act through three fundamental molecular mechanisms reaction rates, protein structure, and membrane fluidity. During acute warming, these molecular effects then lead to loss of equilibrium and death through various cellular, organ, and physiological pathways. These pathways include mitochondrial dysfunction, oxygen limitation, and impacted excitability of excitable cells and eventually lead to neural and/or muscular failure. The pathways may also lead to loss of homeostasis and subsequent heat failure. There is strong evidence in some species for oxygen limitation in these processes and strong evidence against it in other species and contexts. The limiting mechanisms during acute warming therefore appear to differ between species, life stages, and recent thermal history. We conclude that a single mechanism underpinning the acute upper thermal tolerance across species and contexts will not be found. Therefore, we propose future avenues of research that can elucidate major patterns of physiological thermal limitations in fish.

Funder

Research Council of Norway

EC | ERC | HORIZON EUROPE European Research Council

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3