Temperature- and external K+-dependence of electrical excitation in ventricular myocytes of cod-like fishes

Author:

Abramochkin Denis V.123ORCID,Haverinen Jaakko4,Mitenkov Yuri A.5ORCID,Vornanen Matti4ORCID

Affiliation:

1. Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia

2. Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia

3. Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia

4. Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland

5. VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia

Abstract

Electrical excitability (EE) is vital for cardiac function and strongly modulated by temperature and external K+ concentration ([K+]o) as formulated in the hypothesis of temperature-dependent deterioration of electrical excitability (TDEE). Since little is known about EE of arctic stenothermic fishes, we tested the TDEE hypothesis on ventricular myocytes of polar cod (Boreogadus saida) and navaga cod (Eleginus navaga) of the Arctic Ocean and those of temperate freshwater burbot (Lota lota). Ventricular action potentials (APs) were elicited in current-clamp experiments at 3, 9 and 15°C, and AP characteristics and the current needed to elicit AP were examined. At 3°C, ventricular APs of polar and navaga cod were similar but differed from that of burbot in having lower rate of AP upstroke and higher rate of repolarization. EE of ventricular myocytes - defined as the ease with which all-or-none APs are triggered - was little affected by acute temperature changes between 3 and 15°C in any species. However, AP duration (APD50) was drastically reduced at higher temperatures. Elevation of [K+]o from 3 to 5.4 and further to 8 mM at 3, 9 and 15°C strongly affected EE and AP characteristics in polar and navaga cod, but less in burbot. In all species, ventricular excitation was resistant to acute temperature elevations, while small increases in [K+]o severely compromised EE, in particular in the marine stenotherms. This suggests that EE of the heart in these Gadiformes species is well equipped against acute warming, but less so against the simultaneous temperature and exercise stresses.

Funder

Russian Foundation for Basic Research

Academy of Finland

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3