TimerQuant: A modelling approach to tandem fluorescent timer design and data interpretation for measuring protein turnover in embryos

Author:

Barry Joseph D.1,Donà Erika1,Gilmour Darren1,Huber Wolfgang1

Affiliation:

1. EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Abstract

Studies on signalling dynamics in living embryos have been limited by a scarcity of in vivo reporters. Tandem fluorescent protein timers provide a generic method for detecting changes in protein population age and thus provide readouts for signalling events that lead to changes in protein stability or location. When imaged with quantitative dual-colour fluorescence microscopy, tandem timers offer detailed ‘snapshot’ readouts of signalling activity from subcellular to organismal scales, and therefore have the potential to revolutionize studies in developing embryos. Here we use computer modelling and embryo experiments to explore the behaviour of tandem timers in developing systems. We present a mathematical model of timer kinetics and provide software tools that will allow experimentalists to select the most appropriate timer designs for their biological question, and guide interpretation of the obtained readouts. Through the generation of a series of novel zebrafish reporter lines, we confirm experimentally that our quantitative model can accurately predict different timer responses in developing embryos and explain some less expected findings. For example, increasing the FRET efficiency of a tandem timer actually increases the ability of the timer to detect differences in protein half-life. Finally, while previous studies have used timers to monitor changes in protein turnover, our model shows that timers can also be used to facilitate the monitoring of gene expression kinetics in vivo.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3