Limitations of fluorescent timer protein maturation kinetics to isolate transcriptionally synchronized cortically differentiating human pluripotent stem cells

Author:

Peter ManuelORCID,Shipman SethORCID,Macklis Jeffrey D.ORCID

Abstract

Differentiation of human pluripotent stem cells (hPSC) into distinct neuronal populations holds substantial potential for disease modelingin vitro, toward both elucidation of pathobiological mechanisms and screening of potential therapeutic agents. For successful differentiation of hPSCs into subtype-specific neurons usingin vitroprotocols, detailed understanding of the transcriptional networks and their dynamic programs regulating endogenous cell fate decisions is critical. One major roadblock is the heterochronic nature of neurodevelopment, during which distinct cells and cell types in the brain and duringin vitrodifferentiation mature and acquire their fates in an unsynchronized manner, hindering pooled transcriptional comparisons. One potential approach is to “translate” chronologic time into linear developmental and maturational time. Attempts to partially achieve this using simple binary promotor-driven fluorescent proteins (FPs) to pool similar cells have not been able to achieve this goal, due to asynchrony of promotor onset in individual cells. Toward solving this, we generated and tested a range of knock-in hPSC lines that express five distinct dual FP timer systems or single time-resolved fluorescent timer (FT) molecules, either in 293T cells or in human hPSCs driving expression from the endogenous paired box 6 (PAX6) promoter of cerebral cortex progenitors. While each of these dual FP or FT systems faithfully reported chronologic time when expressed from a strong inducible promoter in 293T cells, none of the tested FP/FT constructs followed the same fluorescence kinetics in developing human neural progenitor cells, and were unsuccessful in identification and isolation of distinct, developmentally synchronized cortical progenitor populations based on ratiometric fluorescence. This work highlights unique and often surprising expression kinetics and regulation in specific cell types differentiating from hPSCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3