Affiliation:
1. College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
2. Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
Abstract
Limits to sustained energy intake (SusEI) during lactation are important because they provide an upper boundary below which females must trade-off competing physiological activities. To date, SusEI is thought to be limited either by the capacity of the mammary glands to produce milk (the peripheral limitation hypothesis), or by a female's ability to dissipate body heat (the heat dissipation hypothesis). In the present study, we examined the effects of litter size and ambient temperature on a set of physiological, behavioral, and morphological indicators of SusEI and reproductive performance in lactating Swiss mice. Our results indicate that energy input, output, and mammary gland mass increased with litter size, whereas pup body mass and survival rate decreased. The body temperature increased significantly, while food intake (18g/d at 21°C vs 10g/d at 30°C), thermal conductance (lower by 20-27% at 30°C than 21°C), litter mass and MEO decreased significantly in the females raising large litter size at 30°C compared to those at 21°C. Furthermore, an interaction between ambient temperature and litter size affected females' energy budget, imposing strong constraints on SusEI. Together, out data suggest that the limitation may be caused by both mammary glands and heat dissipation, i.e. the limits to mammary gland is dominant at the room temperature, but heat limitation is more significant at warm temperatures. Further, the level of heat dissipation limits may be temperature dependent, shifting down with increasing temperature.
Funder
National Natural Science Foundation of China
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献