The extent and function of ‘food grinding’ in the laboratory mouse (Mus musculus)

Author:

Cameron K M1,Speakman J R1

Affiliation:

1. Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK

Abstract

Many laboratory rodents grind their food into crumbs that are discarded at the bottom of the cage (sometimes called orts). This can have substantial impacts on measures of food intake and assimilation efficiency. We quantified food grinding in two laboratory mouse strains on eight different diets and distinguished between two hypotheses of why food grinding occurs: a stereotypic behaviour due to a lack of environmental enrichment, or part of an optimal food intake strategy. Orts were quantified when mice were exposed to environmental enrichment and when offered diets of differing energetic quality. Grinding was significantly different between diets, but not between strains, although there was a significant diet by strain interaction. Ort production was lowest on the hardest diets. Not accounting for orts could affect food intake estimates by up to 31.8% and assimilation efficiency by up to 16.7%. Environmental enrichment increased physical activity, but did not reduce grinding. Mice selected the higher energy density components of the food. We suggest a refinement of the current methodology for measuring food intake is essential, primarily because failure to take ort production into account created inaccurate estimates of food intake and assimilation efficiency in mice. Adding environmental enrichment is unlikely to reduce food grinding, but careful choice of diet will reduce the errors.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism;Annual Review of Nutrition;2024-08-29

2. Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet;Nutrients;2024-08-16

3. Polymerase Chain Reaction on In-cage Filter Paper at Different Time Points to Detect Helicobacter spp.;Journal of the American Association for Laboratory Animal Science;2024-07-01

4. Food Grinding Behavior: A Review of Causality and Influential Factors;Animals;2024-06-24

5. Nutrition, feeding and animal welfare;The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals;2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3