Limits to sustained energy intake. XXII. Reproductive performance of two selected mouse lines with different thermal conductance

Author:

Speakman John R.1,Al-Jothery Aqeel H.1,Król Elżbieta1,Hawkins James1,Chetoui Aurore1,Saint-Lambert Alexander1,Gamo Yuko1,Shaw Suzanne C.1,Valencak Teresa1,Bünger Lutz2,Hill William3,Vaanholt Lobke1,Hambly Catherine1

Affiliation:

1. University of Aberdeen, United Kingdom;

2. Scotland's Rural College (SRUC), United Kingdom;

3. University of Edinburgh, United Kingdom

Abstract

Abstract Maximal sustained energy intake (SusEI) appears limited, but the factors imposing the limit are disputed. We studied reproductive performance in two lines of mice selected for high and low food intake (MH and ML, respectively), and known to have large differences in thermal conductance (29% higher in the MH line at 21°C). When these mice raised their natural litters, their metabolisable energy intake significantly increased over the first 13 days of lactation and then reached a plateau. At peak lactation, MH mice assimilated on average 45.3 % more energy than ML mice (222.9±7.1 and 153.4±12.5 kJ day-1, N=49 and 24, respectively). Moreover, MH mice exported on average 62.3 kJ day-1 more energy as milk than ML mice (118.9±5.3 and 56.6±5.4 kJ day-1, N= subset of 32 and 21, respectively). The elevated milk production of MH mice enabled them to wean litters (65.2±2.1 g) that were on average 50.2% heavier than litters produced by ML mothers (43.4±3.0 g), and pups that were on average 27.2% heavier (9.9±0.2 and 7.8±0.2 g, respectively). Lactating mice in both lines had significantly longer and heavier guts compared to non-reproductive mice. However, inconsistent with the central limit hypothesis, the ML mice had significantly longer and heavier intestines than MH mice. An experiment where the mice raised litters of the opposing line demonstrated that lactation performance was not limited by offspring growth capacity. Our findings are consistent with the idea that the SusEI at peak lactation is constrained by the capacity of the mothers to dissipate body heat.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3