Predicting the effects of climate change on incubation in reptiles: methodological advances and new directions

Author:

Carter A. L.12,Janzen Fredric J.12ORCID

Affiliation:

1. Michigan State University, Kellogg Biological Station, 3700 E Gull Lake Drive, Hickory Corners, MI 49060, USA

2. Iowa State University, Department of Ecology, Evolution and Organismal Biology, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA 50011, USA

Abstract

ABSTRACT The unprecedented advancement of global climate change is affecting thermal conditions across spatial and temporal scales. Reptiles with temperature-dependent sex determination (TSD) are uniquely vulnerable to even fine-scale variation in incubation conditions and are a model system for investigating the impacts of shifting temperatures on key physiological and life-history traits. The ways in which current and predicted future climatic conditions translate from macro- to ultra-fine scale temperature traces in subterranean nests is insufficiently understood. Reliably predicting the ways in which fine-scale, daily and seasonally fluctuating nest temperatures influence embryonic development and offspring phenotypes is a goal that remains constrained by many of the same logistical challenges that have persisted throughout more than four decades of research on TSD. However, recent advances in microclimate and developmental modeling should allow us to move farther away from relatively coarse metrics with limited predictive capacity and towards a fully mechanistic model of TSD that can predict incubation conditions and phenotypic outcomes for a variety of reptile species across space and time and for any climate scenario.

Funder

U.S. Department of Defense

National Institutes of Health

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3