Geographic variation in incubation temperatures promoting viable offspring production in broadly co‐distributed turtles

Author:

Cordero Gerardo A.1ORCID,Balk Michelle L.1,Pérez‐González César E.1,Solberg Lisa M.1,Doody Jeremiah Sean2,Plummer Michael V.3,Janzen Fredric J.1

Affiliation:

1. Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa USA

2. Department of Integrative Biology University of South Florida‐St. Petersburg St. Petersburg Florida USA

3. Department of Biology Harding University Searcy Arkansas USA

Abstract

AbstractOrganisms whose early life stages are environmentally sensitive produce offspring within a relatively narrow range of suitable abiotic conditions. In reptiles, development rate and survival are often maximized if incubation temperatures remain under 31°C, though this upper bound may vary within and among species. We addressed this expectation by comparing responses to egg incubation at 30°C versus 33°C in congeneric turtle species pairs with broad syntopic geographic distributions. In the two softshell turtles (Apalone spp.), the greatest changes in development rate and phenotypic variance were observed in the northernmost population, which had a low survival rate (40%) at 33°C. The presumably suboptimal temperature (33°C) for northern populations otherwise yielded 76%–93% survival rates and fast swimming speeds in more southern populations. Still, in one species, northern hatchlings incubated at 33°C matched the elevated speeds of their southern counterparts, revealing a countergradient response. In northern populations of the two map turtles (Graptemys spp.), survival was also reduced (28%–60%) at 33°C and the development rate (relative to 30°C) increased by up to 75%. Our experiments on divergent taxa with similar nesting ecologies substantiate that the optimal thermal range for offspring production is variable. These findings encourage further work on how population‐ and species‐level differences relate to local adaptation in widely distributed oviparous species.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3