Very low force-generating ability and unusually high temperature-dependency in hummingbird flight muscle fibers

Author:

Reiser Peter J.1,Welch Kenneth C.2,Suarez Raul K.3,Altshuler Douglas L.4

Affiliation:

1. Ohio State University;

2. University of Toronto Scarborough;

3. University of California at Santa Barbara;

4. University of California Riverside; University of British Columbia

Abstract

Summary Hummingbird flight muscle is estimated to have among the highest mass-specific power output among vertebrates, based on aerodynamic models. However, little is known about fundamental contractile properties of their remarkable flight muscles. We hypothesized that hummingbird pectoralis fibers generate relatively low force when activated in a tradeoff for high shortening speeds associated with the characteristic high wing beat frequencies that are required for sustained hovering. Our objective was to measure maximal force-generating ability (maximal force/cross-sectional area, Po/CSA) in single, skinned fibers from the pectoralis and supracoracoideus muscles, which power the wing downstroke and upstroke, respectively, in hummingbirds (Calypte anna) and in another similarly-sized species, zebra finch (Taeniopygia guttata), which also has a very high wingbeat frequency during flight but does not perform a sustained hover. Mean Po/CSA in hummingbird pectoralis fibers was very low - 1.6, 6.1 and 12.2 kN/m2, at 10, 15 and 20oC, respectively. Po/CSA in finch pectoralis fibers was also very low (for both species, ~5% of the reported Po/CSA of chicken pectoralis fast fibers at 15oC). Force generated at 20oC/force generated at 10oC ('Q10-force' value) was very high for hummingbird and finch pectoralis fibers (mean = 15.3 and 11.5, respectively), compared to rat slow and fast fibers (1.8 and 1.9, respectively). Po/CSA in hummingbird leg fibers was much higher than in pectoralis fibers, at each temperature, and the mean Q10-force was much lower. Thus, hummingbird and finch pectoralis fibers have an extremely low force-generating ability, compared to other bird and mammalian limb fibers, and an extremely high temperature-dependence of force generation. The extrapolated maximum force-generating ability of hummingbird pectoralis fibers in vivo (~48 kN/m2) is, however, substantially higher than the estimated requirements for hovering flight of C. anna. The unusually low Po/CSA of hummingbird and zebra finch pectoralis fibers may reflect a constraint imposed by a need for extremely high contraction frequencies, especially during hummingbird hovering.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference87 articles.

1. Kinematics of hovering hummingbird flight along simulated and natural elevational gradients;Altshuler;J. Exp. Biol.,2003

2. Allometry of hummingbird lifting performance;Altshuler;J. Exp. Biol.,2010

3. Neuromuscular control of wingbeat kinematics in Anna's hummingbirds (Calypte anna);Altshuler;J. Exp. Biol.,2010

4. The mechanical power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis): the in vivo length cycle and its implications for muscle performance;Askew;J. Exp. Biol.,2001

5. Torpidity in the white-throated swift, Anna hummingbird, and poor-will;Bartholomew;Condor,1957

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3