Affiliation:
1. Department of Integrative Biology, University of California, Berkeley, CA, USA
2. Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
Abstract
The resistance of macroalgae to damage by hydrodynamic forces depends on the mechanical properties of their tissues. Although factors such as water-flow environment, algal growth rate, and damage by herbivores have been shown to influence various material properties of macroalgal tissues, the interplay of these factors as they change seasonally and affect algal mechanical performance has not been worked out. We used the perennial kelp, Egregia menziesii, to study how the material properties of the rachis supporting a frond changed seasonally over a two-year period, and how those changes correlated with seasonal patterns of the environment, growth rate, and herbivore load. Rachis tissue became stiffer, stronger, and less extensible with age (distance from the meristem). Thus, slowly-growing rachises were stiffer, stronger, and tougher than rapidly-growing ones. Growth rates were highest in spring and summer when upwelling and long periods of daylight occurred. Therefore, rachis tissue was most resistant to damage in the winter, when waves were large due to seasonal storms. Herbivory was greatest during summer, when rachis growth rates were high. Unlike other macroalgae, E. menziesii, did not respond to herbivore damage by increasing rachis tissue strength, but rather by growing in width so that the cross-sectional area of the wounded rachis was increased. The relative timing of environmental factors that affect growth rates (e.g., upwelling supply of nutrients, daylight duration) and of those that can damage macroalgae (e.g. winter storms, summer herbivore outbreaks), can influence the material properties and thus the mechanical performance of macroalgae.
Funder
Division of Graduate Education
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献