Of corpses, ghosts and mirages: biomechanical consequences of morphology depend on the environment

Author:

Koehl M. A. R.1ORCID

Affiliation:

1. University of California, Berkeley Department of Integrative Biology , , Berkeley, CA 94720-3140 , USA

Abstract

ABSTRACTOrganisms are subject to the laws of physics, so comparative biomechanics is a powerful approach for identifying basic principles that apply across taxa of how morphology affects performance of mechanical functions such as locomotion, feeding or resisting damage. Journal of Experimental Biology has been a leading journal for decades in publishing studies revealing such basic biomechanical principles. However, field studies of the physical environment, ecological interactions and life-history strategies of organisms reveal which aspects of their biomechanical performance are important to their success in different types of natural habitats, and thus enable us to design ecologically relevant laboratory experiments to understand biomechanical function. Because the fitness consequences of differences in morphology are affected by the biological and physical environment, biomechanics can be used to identify how physical constraints on the performance of organisms with different body plans in variable environments can affect evolution. I illustrate these points with examples from the literature that show how the biomechanical consequences of morphology depend on the ecology of the organisms. Knowledge of the temporal patterns of interactions of organisms with their physical and biological environments is essential for understanding their functional morphology as it changes during ontogeny, and it reveals constraints on their evolution.

Funder

Office of Naval Research

MacArthur Fellowship

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference203 articles.

1. High Speed Visual Insect Swarm Tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight;Ahmed;Bioinsp. Biomim.,2022

2. Nature's Flyers

3. Elastic energy stores in running vertebrates;Alexander;Am. Zool.,1984

4. Factors of safety in the structure of animals;Alexander;Sci. Prog.,1981

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Life Outside;Annual Review of Marine Science;2024-01-17

2. A century of comparative biomechanics: emerging and historical perspectives on an interdisciplinary field;Journal of Experimental Biology;2023-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3