Life stages differ in plasticity to temperature fluctuations and uniquely contribute to adult phenotype

Author:

Carter Amanda W.1ORCID,Sheldon Kimberly S.1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA

Abstract

Adaptive thermal plasticity allows organisms to adjust their physiology to cope with fluctuating environments. However, thermal plasticity is rarely studied in response to thermal variability and is often measured in a single life stage. Plasticity in response to thermal variability likely differs from responses to constant temperatures or acute stress. In addition, life stages likely differ in their plasticity and responses in one stage may be affected by the experiences in a previous stage. Increasing the resolution with which we understand thermal plasticity in response to thermal variation across ontogeny is crucial to understanding how organisms cope with the thermal variation in their environment and to estimating the capacity of plasticity to mitigate costs of rapid environmental change. We wanted to know if life stages differ in their capacity for thermal plasticity under temperature fluctuations. We reared Onthophagus taurus dung beetles in either low or high temperature fluctuation treatments and quantified thermal plasticity of metabolism of pupae and adults. We found that adults were thermally plastic and pupae were not. Next, we wanted to know if the plasticity observed in the adult life stage was affected by the thermal conditions during development. We again used low and high temperature fluctuation treatments and reared individuals in one condition through all egg to pupal stages. At eclosion, we switched half of the individuals in each treatment to the opposite fluctuation condition and, later, measured thermal plasticity of metabolism on adults. We found that temperature conditions experienced during the adult stage, but not egg to pupal stages, affects adult thermal plasticity. However, temperature fluctuations during development affect adult body size, suggesting that some aspects of the adult phenotype are decoupled from previous life stages and others are not. Our data demonstrate that life stages mount different responses to temperature variability and uniquely contribute to the adult phenotype. These findings emphasize the need to broadly integrate the life cycle into studies of phenotypic plasticity and physiology; doing so should enhance our ability to predict organismal responses to rapid global change and inform conservation efforts.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3