THE USE OF HEART RATE TO ESTIMATE OXYGEN CONSUMPTION OF FREE-RANGING BLACK-BROWED ALBATROSSES DIOMEDEA MELANOPHRYS

Author:

Bevan R M,Woakes A J,Butler P J,Boyd I L

Abstract

Heart rates (fh) and rates of oxygen consumption (V(dot)O2) were measured in eight black-browed albatrosses (Diomedea melanophrys) when walking on a treadmill, with the aim of using fh to predict V(dot)O2 in free-ranging albatrosses. The resulting relationship between the variables was: V(dot)O2 (ml min-1) = [0.0157fh (beats min-1)]1.60, r2=0.80, P<0.001. In addition to the calibration procedure, six of the albatrosses were injected with doubly labelled water (DLW), and fh and V(dot)O2 were monitored continuously over a 3 day period while the birds were held in a respirometer. During the 3 day period, the birds were walked for up to 3­4 h day-1 in bouts lasting approximately 0.5 h. The heart rate data were used to estimate the metabolic rates of these birds using the above regression. Estimates of metabolic rate derived from fh, DLW and respirometry did not differ (ANOVA; P=0.94), primarily because of the variance between individual birds. There was also no significant difference between the different estimates obtained from the different equations used to calculate energy expenditure from the DLW technique (ANOVA; P=0.95). Mean estimates of V(dot)O2 from fh under active and inactive conditions differed from measured values of V(dot)O2 by -5.9 % and -1.7 % respectively. In addition, the estimates of V(dot)O2 from fh at different walking speeds did not differ significantly from the measured values. It appears that, in the black-browed albatross, fh is as good a predictor of the mean metabolic rate of free-ranging birds as DLW or time­energy budgets combined with either respirometry or DLW. However, the method should be applied to as many individuals and as many instances of a particular behaviour as possible. The heart rate technique offers potential for much more detailed analyses of the daily energy budgets of these birds, and over much longer periods, than has previously been possible.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3