The impact of shape and attachment position of biologging devices in Northern Bald Ibises

Author:

Mizrahy-Rewald OrtalORCID,Winkler Natalie,Amann Frederik,Neugebauer Katharina,Voelkl BernhardORCID,Grogger Herwig A.ORCID,Ruf ThomasORCID,Fritz JohannesORCID

Abstract

Abstract Background The impact of biologging devices on the aerodynamics or hydrodynamics of animals is still poorly understood. This stands in marked contrast to the ever more extensive use of such technologies in wild-living animals. Recently, increasing concerns have been raised about the impairing effects of these devices on the animals concerned. In the early days of biotelemetry, attention was focused solely on reducing weight, but now aerodynamic effects are also increasingly being considered. To investigate these effects, we trained Northern Bald Ibises to fly in a wind tunnel in which we measured heart rate and dynamic body acceleration (VeDBA) as proxies for energy expenditure in relation to different logger shapes and wind flow directions. Results Our data provide evidence that the position of biologging devices significantly influence the flight distances, and the shape of biologging devices has a considerable effect on heart rate and VeDBA, both of which have been used as proxies for energy expenditure. Unfavorable shape and positioning go beyond merely affecting the effort required during flapping flight. The energetically probably more important effect is that the devices impair the bird’s ability to glide or soar and thus force them to perform the energetically much more demanding flapping flight more frequently. This effect was more pronounced in rising air than in horizontal airflow. A complementary study with wild Northern Bald Ibises during spring migration provides evidence that the position of the devices on the bird’s back affects the length of the flight stages. Birds carrying the devices on the upper back, fixed by wing-loop harnesses, had significantly shorter flight stages compared to birds with a more caudally positioned device, fixed by leg-loop harnesses. Conclusion The attachment of biologging devices on birds affects their performance and behavior and thus may influence their fitness and mortality. Our results show that detrimental effects can be reduced with relatively little effort, in particular through a strictly aerodynamic design of the housing and increased consideration of aerodynamics when attaching the device to the body. In birds, the attachment of biologging devices via leg loops to the lower back is clearly preferable to the common attachment via wing loops on the upper back, even if this affects the efficiency of the solar panels. Nevertheless, the importance of drag reduction may vary between systems, as the benefits of having a biologging devices close to the center of gravity may outweigh the increase in drag that this involves. Overall, more research is required in this field. This is both in the interest of animal welfare and of avoiding biasing the quality of the collected data.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3