Mutations in α-tubulin promote basal body maturation and flagellar assembly in the absence of δ-tubulin

Author:

Fromherz Sylvia1,Giddings Thomas H.1,Gomez-Ospina Natalia1,Dutcher Susan K.12

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309-0347, USA

2. Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Box 8232, St Louis, MO 63110, USA

Abstract

We have isolated suppressors of the deletion allele of δ-tubulin, uni3-1, in the biflagellate green alga Chlamydomonas reinhardtii. The deletion of δ-tubulin produces cells that assemble zero, one or two flagella and have basal bodies composed primarily of doublet rather than triplet microtubules. Flagellar number is completely restored in the suppressed strains. Most of the uni3-1 suppressors map to the TUA2 locus, which encodes α2-tubulin. Twelve independent tua2 mutations were sequenced. Amino acids D205 or A208, which are nearly invariant residues in α-tubulin, were altered. The tua2 mutations on their own have a second phenotype - they make the cells colchicine supersensitive. Colchicine supersensitivity itself is not needed for suppression and colchicine cannot phenocopy the suppression. The suppressors partially restore the assembly of triplet microtubules. These results suggest that the δ-tubulin plays two roles: it is needed for extension or stability of the triplet microtubule and also for early maturation of basal bodies. We suggest that the mutant α-tubulin promotes the early maturation of the basal body in the absence of δ-tubulin, perhaps through interactions with other partners, and this allows assembly of the flagella.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3