10-nm filaments are induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin.

Author:

Blose S H,Meltzer D I,Feramisco J R

Abstract

Cells were microinjected with four mouse monoclonal antibodies that were directed against either alpha- or beta-tubulin subunits, one monoclonal with activity against both subunits, and a guinea pig polyclonal antibody with activity directed against both subunits, to determine the effects on the distribution of cytoplasmic microtubules and 10-nm filaments. The specificities of the antibodies were confirmed by Western blots, solid phase radioimmunoassay, and Western blot analysis of alpha- and beta-tubulin peptide maps. Two monoclonals DM1A and DM3B3, an anti-alpha- and anti-beta-tubulin respectively, and the guinea pig polyclonal anti-alpha/beta-tubulin antibody (GP1T4) caused the 10-nm filaments to collapse into large lateral aggregates collecting in the cell periphery or tight juxtanuclear caps; the other monoclonal antibodies had no effect when microinjected into cells. The filament collapsing was observed to be complete at 1.5-2 h after injection. During the first 30 min after injection a few cytoplasmic microtubules near the cell periphery could be observed by fluorescence microscopy. This observation was confirmed by electron microscopy, which also demonstrated assembled microtubules in the juxtanuclear region. By 1.5 h, when most of the 10-nm filaments were collapsed, the complete cytoplasmic array of microtubules was observed. Cells injected in prophase were able to assemble a mitotic spindle, suggesting that the antibody did not block microtubule assembly. Metabolic labeling with [35S]methionine of microinjected cells revealed that total protein synthesis was the same as that observed in uninjected cells. This indicated that the microinjected antibody apparently did not produce deleterious effects on cellular metabolism. These results suggest that through a direct interaction of antibodies with either alpha- or beta-tubulin subunits, 10-nm filaments were dissociated from their normal distribution. It is possible that the antibodies disrupted postulated 10-nm filament-microtubule interactions.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3