α- and β-tubulin C-terminal tails with distinct modifications are crucial for ciliary motility and assembly

Author:

Kubo Tomohiro1ORCID,Tani Yuma2,Yanagisawa Haru-Aki2ORCID,Kikkawa Masahide2ORCID,Oda Toshiyuki1ORCID

Affiliation:

1. Graduate School of Medicine, University of Yamanashi 1 Department of Anatomy and Structural Biology , , 1110 Shimokato, Chuo, Yamanashi 409-3898 , Japan

2. Graduate School of Medicine, The University of Tokyo 2 Department of Cell Biology and Anatomy , , 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 , Japan

Abstract

ABSTRACT α- and β-tubulin have an unstructured glutamate-rich region at their C-terminal tails (CTTs). The function of this region in cilia and flagella is still unclear, except that glutamates in CTTs act as the sites for post-translational modifications that affect ciliary motility. The unicellular alga Chlamydomonas possesses only two α-tubulin and two β-tubulin genes, each pair encoding an identical protein. This simple gene organization might enable a complete replacement of the wild-type tubulin with its mutated version. Here, using CRISPR/Cas9, we generated mutant strains expressing tubulins with modified CTTs. We found that the mutant strain in which four glutamate residues in the α-tubulin CTT had been replaced by alanine almost completely lacked polyglutamylated tubulin and displayed paralyzed cilia. In contrast, the mutant strain lacking the glutamate-rich region of the β-tubulin CTT assembled short cilia without the central apparatus. This phenotype is similar to mutant strains harboring a mutation in a subunit of katanin, the function of which has been shown to depend on the β-tubulin CTT. Therefore, our study reveals distinct and important roles of α- and β-tubulin CTTs in the formation and function of cilia.

Funder

Takeda Science Foundation

Uehara Memorial Foundation

Koyanagi Foundation

Institute for Fermentation, Osaka

Kato Memorial Bioscience Foundation

Japan Society for the Promotion of Science

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3