Allometry of skeletal muscle fine structure allows maintenance of aerobic capacity during ontogenetic growth

Author:

Young Steven1,Egginton Stuart1

Affiliation:

1. Department of Physiology, University of Birmingham, Vincent Drive,Edgbaston, Birmingham B15 2TT, UK

Abstract

SUMMARY Controversy exists over the scaling of oxygen consumption with body mass in vertebrates. A combination of biochemical and structural analyses were used to examine whether individual elements influencing oxygen delivery and demand within locomotory muscle respond similarly during ontogenetic growth of striped bass. Mass-specific metabolic enzyme activity confirmed that glycolytic capacity scaled positively in deep white muscle (regression slope, b=0.1 to 0.8) over a body mass range of ∼20–1500 g, but only creatine phosphokinase showed positive scaling in lateral red muscle(b=0.5). Although oxidative enzymes showed negative allometry in red muscle (b=–0.01 to –0.02), mass-specific myoglobin content scaled positively (b=0.7). Capillary to fibre ratio of red muscle was higher in larger (1.42±0.15) than smaller (1.20±0.15)fish, suggesting progressive angiogenesis. By contrast, capillary density decreased (1989±161 vs 2962±305 mm–2)as a result of larger fibre size (658±31 vs 307±24μm2 in 1595 g and 22.9 g fish, respectively). Thus, facilitated and convective delivery of O2 show opposite allometric trends. Relative mitochondrial content of red muscle (an index of O2demand) varied little with body mass overall, but declined from ∼40% fibre volume in the smallest to ∼30% in the largest fish. However, total content per fibre increased, suggesting that mitochondrial biogenesis supported aerobic capacity during fibre growth. Heterogeneous fibre size indicates both hypertrophic and hyperplastic growth, although positive scaling of fibre myofibrillar content (b=0.085) may enhance specific force generation in larger fish. Modelling intracellular PO2distribution suggests such integrated structural modifications are required to maintain adequate oxygen delivery (calculated PO2 5.15±0.02 kPa and 5.21±0.01 kPa in small and large fish, respectively).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3