Body size dictates physiological and behavioural responses to hypoxia and elevated water temperatures in Murray cod (Maccullochella peelii)

Author:

McPhee Darren1,Watson Jabin R1,Harding Doug J2,Prior Andrea2,Fawcett James H2,Franklin Craig E1ORCID,Cramp Rebecca L1ORCID

Affiliation:

1. The University of Queensland School of Biological Sciences, , Brisbane, Queensland, 4072, Australia

2. Manufacturing and Water Queensland Department of Regional Development, , 203 Tor St., Toowoomba, Queensland, 4350, Australia

Abstract

Abstract Increasing drought frequency and duration pose a significant threat to fish species in dryland river systems. As ectotherms, fish thermal and hypoxia tolerances directly determine the capacity of species to persist in these environments during low flow periods when water temperatures are high and waterbodies become highly stratified. Chronic thermal stress can compound the impacts of acute hypoxic events on fish resulting in significant fish mortality; however, it is not known if all size classes are equally susceptible, or if the allometric scaling of physiological processes means some size classes are disproportionately affected. We investigated the physiological responses of Murray cod (Maccullochella peelii) over a four-fold body size range (0.2–3000 g) to acute changes in water temperature and oxygen concentration following 4 weeks of acclimation to representative spring (20°C) and summer (28°C) water temperatures. We recorded maximum thermal tolerance (CTmax), oxygen limited thermal tolerance (PCTmax), lowest tolerable oxygen level (as the oxygen level at which lose equilibrium; O2,LOE), gill ventilation rates and aerial surface respiration threshold, blood oxygen transport capacity and lactate accumulation. Acclimation to elevated water temperatures improved thermal and hypoxia tolerance metrics across all size classes. However, body size significantly affected thermal and hypoxia responses. Small M. peelii were significantly less hypoxia tolerant than larger individuals, while larger fish were significantly less thermal tolerant than smaller fish. Hypoxia constrained thermal tolerance in M. peelii, with both small and large fish disproportionally compromised relative to mid-sized fish. Our findings indicate that both very small/young (larvae, fry, fingerlings) and very large/older M. peelii in dryland rivers are at significant risk from the combined impacts of a warming and drying climate and water extraction. These data will inform policy decisions that serve to balance competing demands on precious freshwater resources.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3