Allometric scaling in centrarchid fish: origins of intra- and inter-specific variation in oxidative and glycolytic enzyme levels in muscle

Author:

Davies Rhiannon1,Moyes Christopher D.1

Affiliation:

1. Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada

Abstract

SUMMARY The influence of body size on metabolic rate, muscle enzyme activities and the underlying patterns of mRNA for these enzymes were explored in an effort to explain the genetic basis of allometric variation in metabolic enzymes. We studied two pairs of sister species of centrarchid fish: black bass(largemouth bass Micropterus salmoides and smallmouth bass Micropterus dolomieui) and sunfish (pumpkinseed Lepomis gibbosus and bluegill Lepomis macrochirus). Our goal was to assess the regulatory basis of both intraspecific and interspecific variation relative to body size, as well as to gain insights into the evolutionary constraints within lineages. Whole animal routine metabolic rate showed scaling coefficients not significantly different from 1, ranging from (+0.87 to +0.96). However, there were significant effects of body size on the specific activities of oxidative and glycolytic enzymes. Mass-specific activity of the oxidative enzyme citrate synthase (CS) scaled negatively with body size in each species, with scaling coefficients ranging from –0.15 to –0.19, whereas the glycolytic enzyme pyruvate kinase (PK) showed positive scaling, with scaling coefficients ranging from +0.08 to +0.23. The ratio of mass-specific enzyme activity in PK to CS increased with body size,whereas the ratio of mRNA transcripts of PK to CS was unaffected, suggesting the enzyme relationships were not due simply to transcriptional regulation of both genes. The mass-dependent differences in PK activities were best explained by transcriptional regulation of the muscle PK gene; PK mRNA was a good predictor of PK specific enzyme activity within species and between species. Conversely, CS mRNA did not correlate with CS specific enzyme activities, suggesting post-transcriptional mechanisms may explain the observed inter-specific and intraspecific differences in oxidative enzymes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

1. Burness, G. P., Leary, S. C., Hochachka, P. W. and Moyes, C. D. (1999). Allometric scaling of RNA, DNA, and enzyme levels in fish muscle. Am. J. Physiol.277,R1164-R1170.

2. Clarke, A. and Johnston, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol.68,893-905.

3. Dalziel, A. C., Moore, S. E. and Moyes, C. D.(2004). Mitochondrial enzyme content in the muscles of high-performance fish: evolution and variation among fiber types. Am. J. Physiol.288,R163-R172

4. Darveau, C. A., Suarez, R. K., Andrews, R. D. and Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. Nature417,166-170.

5. Dent, L. and Lutterschmidt, W. I. (2003). Comparative thermal physiology of two sympatric sunfishes (Centrarchidae:Perciformes) with a discussion of microhabitat utilization. J. Therm. Biol.28,67-74.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3