Affiliation:
1. Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
Abstract
SUMMARY
The influence of body size on metabolic rate, muscle enzyme activities and the underlying patterns of mRNA for these enzymes were explored in an effort to explain the genetic basis of allometric variation in metabolic enzymes. We studied two pairs of sister species of centrarchid fish: black bass(largemouth bass Micropterus salmoides and smallmouth bass Micropterus dolomieui) and sunfish (pumpkinseed Lepomis gibbosus and bluegill Lepomis macrochirus). Our goal was to assess the regulatory basis of both intraspecific and interspecific variation relative to body size, as well as to gain insights into the evolutionary constraints within lineages. Whole animal routine metabolic rate showed scaling coefficients not significantly different from 1, ranging from (+0.87 to +0.96). However, there were significant effects of body size on the specific activities of oxidative and glycolytic enzymes. Mass-specific activity of the oxidative enzyme citrate synthase (CS) scaled negatively with body size in each species, with scaling coefficients ranging from –0.15 to –0.19, whereas the glycolytic enzyme pyruvate kinase (PK) showed positive scaling, with scaling coefficients ranging from +0.08 to +0.23. The ratio of mass-specific enzyme activity in PK to CS increased with body size,whereas the ratio of mRNA transcripts of PK to CS was unaffected, suggesting the enzyme relationships were not due simply to transcriptional regulation of both genes. The mass-dependent differences in PK activities were best explained by transcriptional regulation of the muscle PK gene; PK mRNA was a good predictor of PK specific enzyme activity within species and between species. Conversely, CS mRNA did not correlate with CS specific enzyme activities, suggesting post-transcriptional mechanisms may explain the observed inter-specific and intraspecific differences in oxidative enzymes.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference33 articles.
1. Burness, G. P., Leary, S. C., Hochachka, P. W. and Moyes, C. D. (1999). Allometric scaling of RNA, DNA, and enzyme levels in fish muscle. Am. J. Physiol.277,R1164-R1170.
2. Clarke, A. and Johnston, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol.68,893-905.
3. Dalziel, A. C., Moore, S. E. and Moyes, C. D.(2004). Mitochondrial enzyme content in the muscles of high-performance fish: evolution and variation among fiber types. Am. J. Physiol.288,R163-R172
4. Darveau, C. A., Suarez, R. K., Andrews, R. D. and Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. Nature417,166-170.
5. Dent, L. and Lutterschmidt, W. I. (2003). Comparative thermal physiology of two sympatric sunfishes (Centrarchidae:Perciformes) with a discussion of microhabitat utilization. J. Therm. Biol.28,67-74.